Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.13.22276354

ABSTRACT

ImportanceCOVID-19 vaccination is recommended during pregnancy for the protection of the mother. Little is known about the immune response to booster vaccinations during pregnancy. ObjectiveTo measure immune responses to COVID-19 primary and booster mRNA vaccination during pregnancy and transplacental antibody transfer to the newborn. DesignProspective cohort study of pregnant participants enrolled from July 2021 to January 2022, with follow up through and up to 12 months after delivery. SettingMulticenter study conducted at 9 academic sites. ParticipantsPregnant participants who received COVID-19 vaccination during pregnancy and their newborns. Exposure(s)Primary or booster COVID-19 mRNA vaccination during pregnancy. Main Outcome(s) and Measure(s)SARS-CoV-2 binding and neutralizing antibody (nAb) titers after primary or booster COVID-19 mRNA vaccination during pregnancy and antibody transfer to the newborn. Immune responses were compared between primary and booster vaccine recipients in maternal sera at delivery and in cord blood, after adjusting for days since last vaccination. ResultsIn this interim analysis, 167 participants received a primary 2-dose series and 73 received a booster dose of mRNA vaccine during pregnancy. Booster vaccination resulted in significantly higher binding and nAb titers, including to the Omicron BA.1 variant, in maternal serum at delivery and cord blood compared to a primary 2-dose series (range 0.55 to 0.88 log10 higher, p<0.0001 for all comparisons). Although levels were significantly lower than to the prototypical D614G variant, nAb to Omicron were present at delivery in 9% (GMT ID50 12.7) of Pfizer and 22% (GMT ID50 14.7) of Moderna recipients, and in 73% (GMT ID50 60.2) of boosted participants (p<0.0001). Transplacental antibody transfer was efficient regardless of vaccination regimen (median transfer ratio range: 1.55-1.77 for binding IgG and 1.00-1.78 for nAb). Conclusions and RelevanceCOVID-19 mRNA vaccination during pregnancy elicited robust immune responses in mothers and efficient transplacental antibody transfer to the newborn. A booster dose during pregnancy significantly increased maternal and cord blood antibody levels, including against Omicron. Findings support continued use of COVID-19 vaccines during pregnancy, including booster doses. Trial Registrationclinical trials.gov; Registration Number: NCT05031468; https://clinicaltrials.gov/ct2/show/NCT05031468 Key PointsO_ST_ABSQuestionC_ST_ABSWhat is the immune response after COVID-19 booster vaccination during pregnancy and how does receipt of a booster dose impact transplacental antibody transfer to the newborn? FindingsReceipt of COVID-19 mRNA vaccines during pregnancy elicited robust binding and neutralizing antibody responses in the mother and in the newborn. Booster vaccination during pregnancy elicited significantly higher antibody levels in mothers at delivery and cord blood than 2-dose vaccination, including against the Omicron BA.1 variant. MeaningCOVID-19 vaccines, especially booster doses, should continue to be strongly recommended during pregnancy.


Subject(s)
COVID-19
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1594631.v1

ABSTRACT

Waning immunity after two SARS-CoV-2 mRNA vaccinations and the emergence of variants precipitated the need for booster doses. We evaluated safety and serological and cellular immunogenicity through 6 months after a third mRNA vaccination in adults who received the mRNA-1273 primary series in the Phase 1 trial approximately 9 to 10 months earlier. The booster vaccine formulations included 100 mcg of mRNA-1273, 50 mcg of mRNA-1273.351 that encodes Beta variant spike protein, and bivalent vaccine of 25 mcg each of mRNA-1273 and mRNA-1273.351. A third dose of mRNA vaccine appeared safe with acceptable reactogenicity. Vaccination induced rapid increases in binding and neutralizing antibody titers to D614G, Beta, Delta and Omicron variants that persisted through 6 months post-boost, particularly after administration of Beta-containing vaccines. Spike-specific CD4 + and CD8 + T cells increased to levels similar to those following the second dose. Boost vaccination induced broad and durable humoral and T cell responses. ClinicalTrials.gov numbers NCT04283461 (mRNA-1273 Phase 1) and NCT04785144 (mRNA-1273.351 Phase 1)

3.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1222037.v1

ABSTRACT

Waning immunity after two SARS-CoV-2 mRNA vaccinations and the emergence of variants precipitated the need for a third dose of vaccine. We evaluated early safety and immunogenicity after a third mRNA vaccination in adults who received the mRNA-1273 primary series in the Phase 1 trial approximately 9 to 10 months earlier. The booster vaccine formulations included 100 mcg of mRNA-1273, 50 mcg of mRNA-1273.351 that encodes Beta variant spike protein, and bivalent vaccine of 25 mcg each of mRNA-1273 and mRNA-1273.351. A third dose of mRNA vaccine appeared safe with acceptable reactogenicity. Vaccination induced rapid increases in binding and neutralizing antibody titers to D614G, Beta, and Delta variants that were similar or greater than peak responses after the second dose. Spike-specific CD4+ and CD8+ T cells increased to similar levels as after the second dose. A third mRNA vaccination was well tolerated and generated robust humoral and T cell responses. ClinicalTrials.gov numbers NCT04283461 (mRNA-1273 Phase 1) and NCT04785144 (mRNA-1273.351 Phase 1)

SELECTION OF CITATIONS
SEARCH DETAIL